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We study the second-moment correlation length and the reduced susceptibility of two ferromagnetic Ising
models with zero-temperature ordering. By introducing a scaling variable motivated by high-temperature series
expansions, we are able to scale data for the one-dimensional Ising ferromagnet rigorously over the entire
temperature range. Analogous scaling expressions are then applied to the two-dimensional fully frustrated
Villain model where excellent finite-size scaling over the entire temperature range is achieved. Thus we
broaden the applicability of the extended scaling method to Ising systems having a zero-temperature critical
point.

DOI: 10.1103/PhysRevB.78.184409 PACS number�s�: 75.50.Lk, 75.40.Mg, 05.50.�q, 64.60.�i

I. INTRODUCTION

Studying the critical behavior of systems that order at
zero temperature is challenging because the typically used
Monte Carlo methods are generally unable to probe the criti-
cal behavior close enough to the zero-temperature critical
point for traditional1 finite-size scaling approaches to yield
precise critical parameters. It is thus necessary to either in-
corporate scaling corrections2 or find better approaches to
scale the data.3,4

Using the intuition gained from high-temperature series
expansions �HTSEs� a scaling approach has been introduced
with the aim of extending the validity of critical scaling ex-
pressions to temperatures well above the critical region. So
far, the approach has been applied to a number of model
systems having finite ordering temperatures.5–8 Inherently,
this approach is ideal to study systems which order at zero
temperature—such as a magnetic system below the lower
critical dimension—since there only temperatures above the
critical point can be accessed numerically. Thus, an impor-
tant first step in adapting the extended scaling approach to
these systems involves the appropriate choice of a scaling
variable.

In this paper we derive extended scaling relations for two
sample ferromagnetic models with no disorder in the inter-
actions and which only order at zero temperature. First, we
study the exactly solvable one-dimensional �1D� Ising ferro-
magnet and then use insights obtained to analyze the non-
trivial two-dimensional �2D� fully frustrated Villain Ising
model.9 Data generated using Monte Carlo simulations for
large system sizes and very low temperatures validate our
scaling approach.

The paper is structured as follows. In Sec. II we discuss
the extended scaling approach and how to adapt it to systems
ordering at zero temperature, illustrating the results with the
one-dimensional case in Sec. III. In Sec. IV we introduce the
�Villain� fully frustrated Ising model and present details of
our numerical calculations. The numerical data are then ana-
lyzed with the extended scaling approach followed by con-
cluding remarks.

II. EXTENDED SCALING

Conventionally, at a continuous phase transition the
power-law critical behavior of any observable O in the ther-
modynamic limit can be written as1

O�t�T�� � t−y �1�

with t= �T−Tc� /Tc as a scaling variable, T the temperature,
and Tc the critical temperature at which the phase transition
occurs. The exponent y describes the “strength” of the diver-
gence at Tc. Alternatively, other critical variables which yield
the same limiting behavior at criticality such as

� = �T − Tc�/T = 1 − �/�c, �2�

where �=1 /T, can be used. For certain models further scal-
ing variables have been introduced, e.g.,

�s =
1

2
�sinh−1�2�� − sinh�2��� �3�

for the 2D Ising ferromagnet10–12 or

�g = 1 − ��/�c�2 �4�

for spin glasses with zero-mean symmetric interaction
distributions.5,13 All these scaling variables are proportional
to �T−Tc� for T→Tc. However, T is not a sensible scaling
variable for a zero-temperature �Tc=0� transition.14 Cardy et
al.15 gave a renormalization-group technique rule for low-
temperature limiting scaling variables at zero-temperature
transitions. For example, for the Potts model studied by
Cardy et al. the appropriate renormalization-group “tempera-
ture” scaling variable is proportional to exp�−��. By analogy,
for a 1D ferromagnetic Ising model for which Tc=0 the scal-
ing variable should be proportional to exp�−2��.14

Scaling expressions may also include temperature-
dependent prefactors, which are noncritical but can be rel-
evant in analyses that include a range of temperatures far
above �or below� Tc. For instance, the reduced susceptibility
���� measured in numerical simulations �see below� is re-
lated to the thermodynamic susceptibility �th��� �which is
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the physically measurable observable� through ����
=�th��� /�. Thus, critical behavior of the form ����� t−� im-
plies �th�����t−�, i.e., with a prefactor �.

The two thermodynamic limit observables that we discuss
here are the ferromagnetic reduced susceptibility � and the
second-moment correlation length �. The ferromagnetic re-
duced susceptibility is given by

� = N�m2� , �5�

where

m =
1

N
�
i=1

N

Si �6�

is the magnetization per spin, N is the number of spins in the
system and �¯� represents a thermal average. The second-
moment correlation length is given by

� = 	�2

z�

1/2

, �7�

where

�2 = �
i,j=1

N

rij
2 �SiSj� �8�

is the second moment of the correlation function, z is the
number of nearest neighbors, and rij is the distance between
spins i and j.16 For a hypercubic lattice z=2D, where D is the
space dimension. Note that numerically we measure the
finite-size correlation length �which is equivalent to the ex-
pression presented in Eq. �7�� as

� =
1

2 sin��km�/2�	 �

��km�
− 1
1/2

, �9�

where km= �2	 /L ,0� is the smallest nonzero wave vector
�here in 2D� and ��k� is the wave-vector-dependent reduced
susceptibility

��k� =
1

N
�
i,j=1

N

�SiSj�eik·rij . �10�

HTSEs of the Ising ferromagnet in large space dimensions
�i.e., in the mean-field regime�7 show that simple relations
for the reduced susceptibility, namely,

���� = �−1, �11�

and for the second-moment correlation length defined in Eq.
�7�

���� = �1/2�−1/2 �12�

are exact for all T
Tc=1. Thus, in this limit with the scaling
variable � �Eq. �2��, the critical power laws for the reduced
observables �th��� /� and ���� /�1/2 hold exactly over the
entire range of � from �c to zero. In finite-dimensional fer-
romagnetic systems—if the same basic variables and expres-
sions are used5–7 with the modification necessary to give the
right high-temperature limits—one obtains “extended scal-
ing” equations in which the leading terms are

���� = C��−� + �1 − C�� �13�

and

���� = �1/2�C��
−� + �1 − C��� . �14�

In Eqs. �13� and �14� C� and C� are critical amplitudes and �
and � are the standard critical exponents.1 With the appropri-
ate critical parameters �critical temperature, critical expo-
nents, as well as critical amplitudes� these expressions are
exact by construction at the �→�c and �→0 limits. Else-
where, the expressions are not exact but have been shown to
give good approximations to the true behavior for the entire
paramagnetic temperature region. By introducing small cor-
rection terms these approximations can be improved consid-
erably.

The expression for finite �c given in Eqs. �13� and �14�
cannot be used for systems with Tc=0 because �c=�. In Sec.
III we present an extended scaling approach tailored to sys-
tems having Tc=0 and a unique nearest-neighbor interaction
strength �Jij� �in this case �Jij�=1 ∀ i , j and no bond
disorder�.17 We first present simple exact expressions for the
1D Ising ferromagnet for which the scaling variable

�t��� = 1 − tanh��� �15�

works well. This is consistent with the Cardy et al. rule15

because �t is equal to 2 exp�−2�� at low temperatures; but,
like �1−� /�c�, �t tends to 1 for T→�. In the light of this
result we then apply the same approach using �t to the non-
trivial 2D fully frustrated Villain model. Our analysis shows
that the extended scaling scenario with �t as a scaling vari-
able gives an excellent account of the behavior of the corre-
lation length and reduced susceptibility extrapolated to infi-
nite size over the entire temperature range.

III. ONE-DIMENSIONAL ISING MODEL

To motivate the scaling expressions for ferromagnetic
Ising models with zero transition temperature, we use as a
toy model the one-dimensional Ising ferromagnet

H1D = − �
i=1

L

Ji,i+1SiSi+1 �16�

with Ji,i+1=1 for all nearest neighbors i and i+1. The model
orders only14 at T=0 and expressions for ���� and ���� in
the infinite-size limit are easily calculated from HTSE. The
reduced susceptibility can be expanded as

���� = 1 + 2�tanh��� + tanh2��� + tanh3��� + ¯� �17�

and the second moment of the correlation is

�2��� = 2�tanh��� + 22 tanh2��� + 32 tanh3��� + . . .� .

�18�

The second-moment correlation length is then given by Eq.
�7� with z=2 in 1D. Using the mathematical identities
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�
n=1

�

xn =
x

1 − x
, �

n=1

�

n2xn =
�x + 1�x
�1 − x�3 , �19�

the exact expressions for susceptibility and correlation length
are thus

���� = exp�2�� =
2

1 − tanh���
− 1 �20�

and

���� =
1

2
�exp�4�� − 1�1/2 =

tanh1/2���
1 − tanh���

. �21�

Note that these expressions are valid for the entire tempera-
ture range.

Equations �20� and �21� are of the extended scaling form7

�see Eqs. �13� and �14�� with �t �Eq. �15�� replacing � in the
extended scaling expressions for the ferromagnets with finite
ordering temperatures. Finally, temperature-dependent effec-
tive exponents can be defined as

���� = − d log���/d log�1 − tanh���� �22�

and

���� = − d log�����/tanh1/2����/d log�1 − tanh���� .

�23�

In the limit T→Tc=0 the critical exponents are thus �c=�c
=1.

For the Ising ferromagnet in one space dimension with
linear extent L=N the Fisher finite-size scaling rule1 for an
observable

O�L,�� � Ly/�F�L/����� �24�

when applied to the reduced susceptibility leads to

��L,�� + 1

L/tanh���1/2 � F�	L�1 − tanh����
tanh1/2��� 
 � F��	 ����

L

 .

�25�

In Fig. 1 we illustrate the previously derived scaling relations
with data for the reduced susceptibility for finite system
sizes. The data are obtained by starting with the partition
function Z=+

L +−
L for a one-dimensional system of L spins

in a field H,18 with

� = e��cosh��H� � cosh2��H� − 2e−2� sinh�2��� .

�26�

To obtain the thermodynamic susceptibility �th���, we per-
form a second-order derivative of the free energy per spin
F=−�1 /��ln Z�L� with respect to H, subsequently setting
H=0. The raw data for �=�th /� �inset� are scaled according
to Eq. �25�. The scaling is perfect.

IV. TWO-DIMENSIONAL VILLAIN MODEL

The two-dimensional fully frustrated Ising model, or Vil-
lain model,9 consists of Ising spins on a square lattice with

nearest-neighbor bonds �Jij�=1; in the x direction all bonds
are ferromagnetic, while in the y direction columns of bonds
are alternately ferromagnetic and antiferromagnetic. The
Hamiltonian is thus given by

H = − �
�i,j�

JijSiSj , �27�

where Si= �1 represent Ising spins on a square lattice with
N=L2 spins. The system is fully frustrated; i.e., the product
of the bonds around each plaquette of the system is negative,

�
�

Jij = − 1. �28�

The model does not order at a finite temperature19 but exhib-
its a critical point at zero temperature with diverging ferro-
magnetic reduced susceptibility and a ground-state degen-
eracy which grows exponentially with the system size.

For the scaling analysis we compute the reduced suscep-
tibility �Eq. �5�� and the finite-size second-moment correla-
tion length �Eq. �9��. The simulations are done using ex-
change �parallel tempering� Monte Carlo20–22 and the
simulation parameters are presented in Table I. Equilibration
is tested by a logarithmic binning of the data. Once the last
three bins for all observables agree within error bars the sys-
tem is considered to be in thermal equilibrium. We use peri-
odic boundary conditions to reduce finite-size corrections.

Forgacs19 showed analytically that the limiting low-
temperature thermodynamic behavior of the correlation
length of the 2D fully frustrated Villain model is strictly
exponential, i.e., �����exp�2��. Furthermore, the critical
exponent � describing the decay of the correlation at Tc is
exactly 1/2 such that in the low-temperature limit, using
����������/� �Eqs. �13� and �14�� and the standard scaling
relation �= �2−���, we obtain ���������2−�=exp�3��.
Based on an analysis of the size dependence of the energy by
Lukic et al.23 it has been conjectured that the low-

FIG. 1. �Color online� Scaled ferromagnetic reduced suscepti-
bility �Eq. �5�� for the 1D Ising ferromagnet according to Eq. �25�.
The data scale perfectly and thus validate the derived scaling ex-
pressions. The inset shows the unscaled data for different system
sizes, as well as the thermodynamic limit �thick gray line�.
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temperature limit for the correlation length is exactly ����
= �1 /2�exp�2��. No full HTSE study seems to have been
carried out to date; however, by inspection, the leading
HTSE terms for the reduced susceptibility are ����=1+2�
+O��2� and for the second moment of the correlation length
�2=�+O��2�.

Scaling dimensionless ratios of finite-size data for the cor-
relation length ���2L ,�� /��L ,��� and susceptibility
���2L ,�� /��L ,��� vs the two-point finite-size correlation
length divided by the system size ���L ,�� /L�, which is also
a dimensionless quantity,3 yields unique curves depending
only on the universality class if there are no finite-size cor-
rections to scaling. For the system sizes studied, the Villain
model shows weak corrections to scaling. This can be seen in
Figs. 2 and 3 where the ratios are shown as functions of
exp�−L /��L ,���.3 In principle, it should be possible to use
the ansatz of Calabrese et al.;24 i.e.,

��2L,��
��L,��

= F�L/��L,��� + L−�G�L/��L,��� , �29�

where � is the finite-size scaling correction exponent and F
and G are scaling functions. �Similar relations apply for the
susceptibility �.� As shown below when T→0, ����� di-
verges until ������L; the values of the observables saturate
at ��L ,��→��L ,�c=�� and ��L ,��→��L ,�c�. The lowest
temperature at which the simulations have been carried out is
T=0.1. At this temperature we find ��L=� ,���2.8�108,
thus for all L studied ��L=� ,���L and we can take the
measured values of observables at all L as good approxima-
tions to the T=0 value. Hence, for �→�c the prefactor
sin��km� /2� is the only L-dependent factor in Eq. �9�, which
leads to ��2L ,�c� /��L ,�c�→2. Furthermore, because �
=1 /2, ��2L ,�c� /��L ,�c�→22−�=2.82843. . . exactly. Figure
4�a� shows ��2L ,�c� /��L ,�c� and Fig. 4�b� shows

TABLE I. Parameters of the simulations. L denotes the system size, Nsa is the number of independent runs
to improve the statistics and Nsw is the total number of Monte Carlo sweeps performed in a single run for
each of the 2NT replicas. Tmin and Tmax are the lowest and highest temperatures simulated, respectively, and
NT is the number of temperatures used in the parallel tempering method.

L Nsa Nsw NT Tmin Tmax

8 1000 131072 30 0.1 3.0

12 1000 131072 30 0.1 3.0

16 1000 131072 30 0.1 3.0

24 1000 262144 30 0.1 3.0

32 1000 262144 30 0.1 3.0

48 500 2097152 30 0.1 3.0

64 100 2097152 30 0.1 3.0

96 100 2097152 30 0.1 3.0

FIG. 2. �Color online� Scaling ratio ��2L ,�� /��L ,�� for the 2D
Villain model as a function of exp�−L /��L ,��� for different system
sizes L. The dashed horizontal line corresponds to the exact infinite
size value ��2L ,�c� /��L ,�c�=2 at the critical point. The vertical
line corresponds to the estimated infinite-size limit ���c� /L=0.488
�see text�.

FIG. 3. �Color online� Scaling ratio ��2L ,�� /��L ,�� as a func-
tion of exp�−L /��L ,��� for the 2D Villain model for different sys-
tem sizes L. The dashed horizontal line corresponds to the exact
infinite-size value ��2L ,�c� /��L ,�c�=23/2 at the critical point since
in general ��Tc ,L��L2−� and �=1 /2. The vertical line corresponds
to the estimated infinite-size limit ���c� /L=0.488 �see text�.

KATZGRABER, CAMPBELL, AND HARTMANN PHYSICAL REVIEW B 78, 184409 �2008�

184409-4



��2L ,�c� /��L ,�c� against 1 /L; it can be seen that the ratio
behaves approximately as ��2L ,�c� /��L ,�c��2.8284
+0.14 /L ���2L ,�c� /��L ,�c��2−0.24 /L� showing that the
correction exponent for the leading correction at large L can
be plausibly taken as ��1 with further terms appearing at
smaller L. In panel �c� of Fig. 4 we show data for
��L ,�c� /L2−�=��L ,�c� /L3/2 against 1 /L. Fitting the data as-
suming �=1 gives the large-size limit ��L ,�c� /L3/2

�0.585�1�−0.05 /L. In a similar way we find the approxi-
mate limiting value of ��L ,�c� /L�0.488�1�+0.1 /L �panel
�d�� and of the Binder cumulant g�L ,�c��0.691�1�
+0.10 /L �not shown�.

The analysis of the data at other temperatures is also con-
sistent with a leading correction with an exponent ��1 plus
further correction terms for smaller L. At all temperatures
studied the difference between the estimated infinite-size val-
ues for the observables and the measured large-L values are
always less than 0.5% of the measured large-L values.

Inspired by the results on the 1D Ising ferromagnet out-
lined in Sec. III with �t=1−tanh��� as a scaling variable, we
now test an analogous scaling of the data for the 2D fully
frustrated Ising model. The critical exponents for the 2D
fully frustrated Ising model �Eqs. �22� and �23�� are �c
=3 /2, �c=1, and �c=1 /2.19 We thus construct trial expres-
sions for the different observables as follows:

�FF��� = C��1 − tanh����−3/2 + �1 − C�� �30�

and

�FF��� = tanh1/2���	 C�

1 − tanh���
+ �1 − C��
 , �31�

where the critical amplitudes C� and C� are the only adjust-
able parameters. It turns out that for the correlation length,
the expression with C�=1.00�1�, i.e.,

�FF���/tanh1/2��� = �1 − tanh����−1 �32�

gives an excellent overall fit to ����� / tanh1/2���, which is
the normalized infinite-size limiting curve estimated from the
scaling curves; see Fig. 5. Over the entire temperature range
the maximum difference between the fit and the numerical
curve is approximately 0.5%. The expression in Eq. �32�
with C�=1 is identical to the exact expression for the 1D
Ising ferromagnet. In the low-temperature limit with C�=1,
�FF→ �1 /2�exp�2�� meaning that the present data and analy-
sis are consistent with the Lukic et al. conjecture23 within
numerical precision. In the high-temperature limit �FF
→�1/2, which is consistent with the first term of the HTSE
for ����.

For the reduced susceptibility the fits to the numerical
data for ����� with Eq. �30� indicate that C� is equal to
2.00�5�; see Fig. 6. The fit in the higher-temperature range
can be improved further by a correction term chosen, so that
there is an exact agreement between the high-temperature
limit obtained from the first two terms in the HTSE, namely,
����= �1+2�2+¯� as �→0. We thus obtain

�FF��� = 2.0�1 − tanh����−3/2 − 2.0 + �1 − tanh���� .

�33�

(a)

(b)

(c)

(d)

FIG. 4. �a� Scaling ratios ��2L ,�� /��L ,�� and �b� ��2L ,�� /��L ,�� plotted against 1 /L. The dashed line corresponds to
��2L ,�� /��L ,���23/2+0.14 /L ���2L ,�� /��L ,���2−0.24 /L�. The full symbol corresponds to the exact thermodynamic value 23/2 in �a�
and 2 in �b�. �c� ��L ,�� /L3/2 vs 1 /L. The dashed line corresponds to ��L ,�� /L3/2�0.585−0.05 /L. Deviations appear for smaller values of
L. �d� ��L ,�� /L plotted against 1 /L. The dashed line corresponds to ��L ,�� /L�0.488+0.1 /L. The data thus suggest that a correction to
scaling exponent ��1 is plausible. All data are for T=0.10. Note that the data point for L=96 is generally a bit high possibly due to the
small statistics used in the simulation.
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With the extended scaling expressions given above �Eqs.
�32� and �33�� the standard Fisher finite-size scaling �FSS�
�Eq. �24�� is modified �see Refs. 5 and 6 for details�. For the
finite-size correlation length we thus obtain from Eqs. �24�
and �32�

��L,��/L � F�	L�1 − tanh����
tanh1/2��� 
 � F��	 �FF

L

 , �34�

whereas for the normalized reduced susceptibility we obtain
from Eqs. �24�, �32�, and �33�

�n�L,�� �
��L,�� + 2 − �1 − tanh����

�L/tanh���1/2�3/2

� F��L�1 − tanh����
tanh1/2��� �

� F��	 �FF

L

 . �35�

A finite-size scaling analysis of the data for the second-
moment correlation length and the susceptibility using Eqs.
�34� and �35� is shown in Figs. 7 and 8, respectively.

The scaling curves have a characteristic form. Quite gen-
erally, at small �� /L, ��L ,�� /L=��L=� ,�� /L so the log-log
plot of, e.g., Fig. 7 is initially a straight line of slope 1 pass-

FIG. 5. �Color online� Normalized correlation length
���� / tanh1/2��� for the 2D fully frustrated Ising model for different
system sizes L as a function of 1−tanh���. The thick line corre-
sponds to the extended scaling correlation length expression Eq.
�32�.

FIG. 6. �Color online� Data for the susceptibility ��L ,�� of the
2D fully frustrated Ising model for different system sizes L as a
function of 1−tanh���. The thick line corresponds to the extended
scaling expression in Eq. �33�.

FIG. 7. �Color online� Finite-size scaling of the two-point cor-
relation length data of the 2D fully frustrated Ising model using the
extended scaling expression �Eqs. �32� and �34��.

FIG. 8. �Color online� Finite-size scaling of the susceptibility of
the 2D fully frustrated Ising model using the extended scaling ex-
pression for the normalized susceptibility �n�L ,��, Eqs. �33� and
�35�.
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ing through the point �1,1�. At the large �� /L limit �which is
equivalent to T=0 for all L� the curves tend to plateau values
K�=��L� /L3/2=0.585�1� and K�=��L� /L=0.488�1� esti-
mated above. If we ignore the marginal corrections to finite-
size scaling, the crossover can be expressed phenomenologi-
cally as

��L,��/L = 	 ������/L�z�

1 + �1/K��z�������/L�z�

1/z�

, �36�

where z� is a crossover exponent. In the present case z�

�2.5. For the reduced susceptibility the initial small-�� /L
behavior is ��L ,�� /L2−�������� /L��2−�� and the analogous
phenomenological crossover equation is

��L,��/L2−� = �	 ������/L�z��2−��

1 + ��/K��z�������/L�z��2−��
1/z�

,

�37�

where z� is the crossover exponent, � is a constant, and K� is
the plateau value. The phenomenological fit values in the
present case are z��2.0 and ��1.95. For both observables
the fits with crossover are of excellent quality.

V. SUMMARY AND CONCLUSION

We have presented scaling expressions motivated via
high-temperature series expansions which extend the scaling
functions across the whole temperature range for systems
which order at zero temperature. For the 1D Ising ferromag-
net we can derive exact extended scaling expressions of the
form ����=2�t

−1−1 and ����=�t
−1 tanh1/2��� with the scaling

variable �t=1−tanh���, critical exponents �c=�c=1 �defined
via Eqs. �22� and �23��, and critical amplitudes C�=2 and
C�=1.

From the insights gained from the study of the 1D ferro-
magnet, we use the same temperature variable �t to analyze
numerical data for the 2D fully frustrated �Villain� model.
The exact critical exponents are known:19 �c=3 /2 and �c
=1. We find that for the second-moment correlation length
����=�t

−1 tanh1/2��� with C�=1 just as for the 1D ferromag-
net. Furthermore, this result is consistent within numerical
accuracy with the low-temperature-limit conjecture of Lukic
et al.23 that ����→ �1 /2�exp�2�� for T→0; however, the
present expression covers the entire temperature range. The
approximate expression for the susceptibility of the Villain
model �Eq. �33�� with critical amplitude C�=2.00�5� is in

good agreement with the numerical data over the entire tem-
perature range covered.

Summarizing, the temperature dependence of observables
above a ferromagnetic transition �including Tc=0 transitions�
can be written in terms of generic extended scaling forms5–7

expressed to leading order as

��x� = x−1/2�C��1 − x�−� + �1 − C��� �38�

and

��x� = C��1 − x�−� + �1 − C�� �39�

with the scaling variable x and critical parameters depending
on the system studied. The expressions are exact by con-
struction in the limits �→�c and �→0 if the critical param-
eters are known. For a ferromagnet with Tc
0 x=� /�c.
Note that in the high-dimensional limit Eqs. �38� and �39� are
exact.7 In finite dimensions �but with nonzero Tc� the expres-
sions remain as good approximations over the entire tem-
perature range. For the two ferromagnets with �Jij�=1, Tc
=0, and no bond disorder, x=tanh��� and thus �t=1
−tanh��� replaces �1−� /�c� as the scaling variable. Effec-
tive exponents are defined through Eqs. �22� and �23�. These
relations are validated with numerical data on the 2D fully
frustrated Ising model.

There are numerous possible candidate systems to which
this approach should in principle be applicable mutatis
mutandis. These include for instance the family of fully frus-
trated 2D systems studied by Forgacs,19 the 2D three-state
Potts antiferromagnet,3,15 the 2D Ising antiferromagnet on a
triangular lattice,25 the 2D � models,3,26 as well as 2D
Heisenberg models.27 An interesting further step would be to
determine scaling expressions for the two-dimensional bimo-
dal Ising spin glass with �Jij�=1 but with random signs for
the interactions, which also orders at zero temperature. In
that case the critical behavior of the model is highly
controversial28–33 and current data at finite temperature do
not have the necessary quality within “traditional” scaling
approaches to determine the true nature of the transition.
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